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In this paper, we analyze the influence of electrode surface roughness and steric effects on the nonlinear
electromechanical behavior of ionic polymer metal composites �IPMCs�. We use the modified Poisson-Nernst-
Planck equations to describe the electric potential and mobile counterion distributions within the IPMC for a
steady voltage applied across the IPMC rough electrodes. We present an analytical solution of the nonlinear
three-dimensional boundary value problem based on the method of matched asymptotic expansions. The
distribution of mobile counterions within the polymer region is characterized by thin boundary layers in the
proximity to the polymer-electrode interfaces, where enrichment and depletion of mobile charges take place.
The presence of rough landscapes drastically increases the polymer-electrode surfaces and thereby significantly
improves the overall charge storage. We determine closed-form expressions for the average bending moment
produced by the IPMC and for its average stored charge and capacitance. We show that the bending moment
produced by an IPMC is linearly proportional to the stored charge, which in turn increases nonlinearly as the
voltage applied across the electrodes increases. The average charge stored in the IPMC increases as the
electrode surface roughness increases and decreases as steric effects become prominent.
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I. INTRODUCTION

Ionic polymer metal composites �IPMCs� are electroac-
tive materials that can operate as sensors �1–4�, actuators
�5–12�, and energy harvesting systems �13,14� in air and
aqueous environments. An IPMC consists of an ion-
exchange polymer membrane plated by noble metal elec-
trodes and infused with a fluid solvent whose mobile coun-
terions neutralize the fixed charges of the backbone polymer.
Upon application of an electrical stimulus across the elec-
trodes, the charge redistribution gives rise to a variety of
concurrent microscopic effects. These effects result in charge
storage at the electrodes and macroscopic mechanical bend-
ing. Conversely, a superimposed mechanical deformation in-
duces charge storage at the electrodes and a voltage drop
across them.

A variety of physics-based models have been proposed in
the past few years to quantitatively describe the electrome-
chanical response of IPMCs. In �15�, linear irreversible ther-
modynamics is used to study IPMC actuation. In �5,16�, a
micromechanics framework is developed to characterize
IPMC sensing and actuation. In �17�, a phenomenological
continuum model of IPMC actuation is proposed. In �7,18�,
multifield mixture theories are used to describe mechanical
actuation and sensing of IPMCs. In �19–23�, IPMC transduc-
tion is studied using a multifield chemoelectrical framework
based on the Poisson-Nernst-Planck model.

Despite the largely different approaches followed in these
modeling efforts, a general consensus on the driving phe-
nomena of IPMC electromechanical behavior has been
achieved �see, for example, �24��. These efforts have demon-
strated that IPMC electromechanical behavior is primarily
dictated by chemoelectric phenomena that take place in the
proximity of the polymer-electrode interfaces. More specifi-

cally, it is now understood that IPMC response is mostly
governed by double-layer effects at the polymer-electrode
interfaces �see, for example, �25�� and that IPMC actuation is
largely due to electrostatic pressure generated by local
charge imbalance at the polymer-electrode interfaces. As
documented in the electrochemistry literature �see, for ex-
ample, �26–29��, double-layer phenomena are strongly af-
fected by the geometry of the interfaces and rough land-
scapes may drastically alter double-layer capacitance and
charge density. Rough electrodes have generally been ob-
served in IPMCs in the form of deep metal protrusions in the
polymer membrane �30–32�. In addition, experimental stud-
ies on IPMCs �30,31,33� have shown that electrode surface
roughness is highly correlated with the IPMC giant capaci-
tance that in turn prominently affects IPMC actuation perfor-
mance. Nevertheless, most of the modeling efforts in the
IPMC literature assume that the electrodes are perfectly flat
surfaces �see, for example, �24��.

In this paper, we analyze the influence of the electrodes’
surface roughness on the static nonlinear electromechanical
behavior of IPMCs. We adopt the multifield chemoelectric
framework originally proposed in �19–21� to determine the
distribution of the electric potential and the concentration of
the counterions in the backbone polymer region in response
to a steady voltage difference applied across the IPMC rough
electrodes. We extend the formulation of �19–21� to account
for steric effects inevitably present at the polymer-electrode
interfaces by considering the modified Poisson-Nernst-
Planck model proposed in �34,35� for analyzing charge dy-
namics of electrolytes.

We use perturbation methods to determine a closed-form
solution of the modified Poisson-Nernst-Planck model. In
particular, we use the method of asymptotic expansions �see,
for example, �36–38�� to determine a closed-form solution of
the nonlinear boundary value chemoelectric problem.
Matched asymptotic expansions have been successfully used
in the analysis of symmetric binary electrolytes �see, for ex-*mporfiri@poly.edu; http://faculty.poly.edu/~mporfiri/index.htm
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ample, �34,35,39–41��. The application of matched
asymptotic expansions to the analysis of IPMCs demands
additional efforts due to the remarkable asymmetries in the
voltage and charge distributions in the polymer region.
Therefore, we build on the mathematical tools presented in
�23� for studying charge dynamics of IPMCs in case of flat
electrodes and in the absence of steric effects to develop a
closed-form solution for the charge and electric potential dis-
tributions in case of rough landscapes and steric effects. Un-
like the problem considered in �23�, we focus on the static
electromechanical response of IPMCs. In this case, the elec-
tric potential and mobile counterion concentration distribu-
tions at the leading order are constant in the bulk polymer
region. While the mobile counterion concentration in the
bulk polymer region is simply equal to the concentration of
fixed charges, the numerical value of the electric potential is
determined by asymptotic matching with the solution in the
proximity of the electrodes. More specifically, we find that
the electric potential in the bulk polymer region depends on
the electrode morphology, the counterion packing limit, and
the voltage applied across the IPMC electrodes.

The proposed solution allows for a quantitative under-
standing of double-layer effects in IPMCs in terms of the
electrode surface roughness and the concentration steric
limit. At the leading order, we transform the three-
dimensional nonlinear boundary value problem into a
handleable second-order ordinary differential equation with
only initial conditions. We determine closed-form expres-
sions for the charge stored in the IPMC and the average
bending moment produced by the IPMC as a function of the
electrode surface roughness and the packing limit of the
counterion concentration. We show that the charge stored in
the IPMC is independent of the IPMC thickness and nominal
surface area, while it is strongly affected by the electrodes’
surface area. The stored charge linearly increases with the
electrode surface area and is reduced by steric effects. Fur-
ther, we determine an analytical relationship between the
charge stored in the IPMC and its bending moment. We show
that the stored charge and the bending moment vary nonlin-
early with the applied voltage. As the voltage increases, we
find that the rate of change in the stored charge and bending
moment decreases.

We organize the paper as follows. In Sec. II, we present
the governing equation of the studied chemoelectric model.
In Sec. III, we use the method of matched asymptotic expan-
sions to determine the charge and electric potential distribu-
tions in the bulk polymer region �outer solution� and to for-

mulate a handleable problem for the charge and
concentration fields in the vicinity of the electrodes �inner
problems�. In Sec. IV, we present our results and compare
our findings with available experimental results. Section V is
left for conclusions.

II. PROBLEM STATEMENT

A. Modeling

We consider an IPMC comprised of a strip of an ion-
conducting polymer membrane of nominal thickness 2h
plated by two rough metallic electrodes and subjected to a
voltage difference across the electrodes V �see Fig. 1�. Points
in the space are identified through the Cartesian coordinate
system �x ,y ,z� in Fig. 1. The polymer region P is defined by

P = ��x,y,z�:�y,z� � S, − h + �−�y,z� � x � h − �+�y,z�� ,

�1�

where S is the polymer midsurface and the positive functions
�+ and �− describe the surface roughness of the anode and
cathode regions, respectively. In other words, the magnitude
of the functions �+ and �− quantifies the through-the-
thickness extension of the electrodes’ metal protrusion in the
bulk polymer region. The actual IPMC thickness at �y ,z� is
thus equal to 2h− ��+�y ,z�+�−�y ,z��. We partition the sur-
face of the polymer region in the union of the polymer region
mantle M, the anode surface S+, and the cathode surface S−.
Surface areas are indicated by � • �. We assume that the func-
tions �� satisfy

�
S�

���y,z�dS� = 0. �2�

The surface element of the electrodes can be written in terms
of the surface element of S as

dS� = dS	J��y,z� , �3�

where we defined

J��y,z� = �1 + 
�s�
��y,z�
2� . �4�

The Jacobians in Eq. �4� measure the local surface change
due to the electrode roughness. Here and henceforth, we de-

compose the three-dimensional nabla operator as �= �
�x î

+�s, where �s is the two-dimensional nabla operator in the

yz plane and î is the unit vector along the x axis. Therefore,
Eq. �2� can be rewritten as
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FIG. 1. Sketch of an IPMC illustrating �a� the problem geometry and coordinate system and �b� cation enrichment in the proximity of the
cathode and cations depletion in the vicinity of the anode region.

MAURIZIO PORFIRI PHYSICAL REVIEW E 79, 041503 �2009�

041503-2



�
S

���y,z�	J��y,z�dS = 0. �5�

Thus, the nominal thickness 2h is defined so that the average
of the surface roughness of the electrodes weighted by their
surface area is zero.

We model the IPMC using the multifield chemoelectrical
formulation proposed in �19–21�. Within this formulation,
the IPMC kinematics is described by the concentration per
unit hydrated polymer volume c of the mobile ion species
and the electric potential field � in the polymer region. For
ease of illustration, we assume that the mobile ionic species
is positively charged. We further assume that both the fixed
charges anchored to the backbone polymer and the mobile
charges have valency equal to one.

The distribution of the electric potential in the polymer
region is described by the Gauss law

� · D� �x,y,z� = F„c�x,y,z� − c0… , �6�

F is Faraday’s constant �F=96 485 C mol−1�, c0 is the con-

centration of the fixed ions, and D� is the electric displace-
ment vector. The electric displacement vector is related to the
electric potential by

D� �x,y,z� = − �0�r � ��x,y,z� , �7�

where �0 is the vacuum permittivity ��0=8.8542
�10−12 F m−1� and �r is the hydrated polymer dielectric
constant. Substituting Eq. �7� into Eq. �6�, we find the Pois-
son equation

− �0�r � ��x,y,z� = F„c�x,y,z� − c0… , �8�

where � is the Laplace operator.
We use the model proposed in �34,35� to account for

steric effects. Under static conditions, this model provides
the following relation between the concentration c and the
electric potential �:

c0

c0 − �c�x,y,z�
� c�x,y,z� +

F

RT
c�x,y,z� � ��x,y,z� = 0,

�9�

where R is the universal gas constant �R
=8.3143 J mol−1 K−1�, T is the IPMC temperature, and � is a
dimensionless positive parameter smaller than 1 that mea-
sures the concentration packing limit. If �=0, mobile coun-
terions can indefinitely grow in the polymer region. If 0
	�	1, the largest concentration of mobile counterions is
bounded by c0 /�. Following the argument of �34,35�, the
maximum concentration c0 /� can be expressed as c0 /�
=a−3 /N, where N is the Avogadro’s number �6.0221
�1023 mol−1� and a is a typical spacing between the
charged ions that is not smaller than the ionic radius �gener-
ally �1 Å�. For typical IPMCs �see, for example, �20,21��
c0�1000 mol m−3. This implies that � varies in the broad
range of 6�10−4−0.2 as a changes in the range of 1–7 Å
examined in �34,35� to include relevant physical effects, such
as ion-ion correlation.

Equations �8� and �9� describe the charge and electric po-
tential distributions in IPMCs under static conditions. We
assume that the IPMC is electroneutral, the electrodes are
perfect conductors, and fringing electric fields at the polymer
mantle are negligible. We further discard Stern layers and
redox reactions at the polymer-electrode interfaces. There-
fore, we consider the following set of boundary and integral
conditions:

�
P

�c�x,y,z� − c0�dP = 0, �10a�

�„��h − ���,y,z… = �
V

2
,�y,z� � S , �10b�

�s��x,y,z� · n̂M�y,z� = 0,�x,y,z� � M , �10c�

where we used n̂�•� to identify the unit outward normal vector
to the surface �•�. More specifically, Eq. �10a� implies that
the IPMC is globally electroneutral, Eq. �10b� imposes that
the voltage difference across the IPMC electrode is V, and
Eq. �10c� forces the electric field to be directed along the
through-the-thickness direction at the polymer mantle.

The charge per unit interface-surface stored in each elec-
trode, say q�

�, is given by the jump of the normal component
of the electric displacement vector across the polymer-
electrode interface, that is,

q�
��y,z� = 
 D� „��h − ���y,z��,y,z… · n̂S��y,z� . �11�

Thus, the charge surface density in the anode and cathode
regions per unit nominal surface, say q�, can be written as

q��y,z� = � �0�r� ���x,y,z�
�x

� �s��x,y,z� · �s�
��y,z���

x=��h−���y,z��
,

�12�

where we used Eq. �3� and

n̂S��y,z� = �
1

	J��y,z�
�î � �s�

��y,z�� . �13�

By integrating Eq. �6� in P and by using the divergence
theorem and Eqs. �10a� and �10c�, we find

�
S

q+�y,z�dS + �
S

q−�y,z�dS = 0. �14�

We note that Eqs. �10c� and �14� imply the global electro-
neutrality condition �10a�. Further, Eq. �14� indicates that the
net charge stored in the anode is equal to the net charge
stored in the cathode. We refer to the charge stored in the
anode per unit nominal surface area as Q, that is, we define
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Q =
�0�r

�S�

��
S
� ���x,y,z�

�x
+ �s��x,y,z� · �s�

+�y,z���
x=h−�+�y,z�

dS .

�15�

Following �5,16�, the electrostatic pressure in the polymer
region can be related to the charge imbalance through

��x,y,z� = kF„c�x,y,z� − c0… , �16�

where the constant k is related to the microstructure of the
polymer and to its hydration level. The bending moment with
respect to the yz plane induced by the electrostatic pressure
on the IPMC at �y ,z� is �see, for example, �42,43��

m�y,z� = − �
−h+�−�y,z�

h−�+�y,z�
x��x,y,z�dx . �17�

We measure the overall actuation performance of the IPMC
through the average bending moment defined by

M =
1

�S��S
m�y,z�dS � −

1

�S��P
x��x,y,z�dP . �18�

By substituting Eq. �8� into Eq. �18�, integrating by parts,
and using the divergence theorem and the boundary condi-
tions �10�, we find

M = �0�r
k

�S��S+
x � ��x,y,z� · n̂S+�y,z�dS+

+ �
S−

x � ��x,y,z� · n̂S−�y,z�dS− − �
P

���x,y,z�
�x

dP� .

�19�

By substituting Eqs. �3�, �10b�, and �13� into Eq. �19� and by
accounting for Eq. �12�, we have

M = − �0�rkV + 2khQ −
k

�S��S
�q+�y,z��+�y,z�

− q−�y,z��−�y,z��dS . �20�

We note that the average bending moment does not change
when computed with respect to different planes that are or-
thogonal to the x axis. Further, if ��=0, that is, in case of flat
electrode, the last summand in the right-hand side of Eq. �20�
is zero.

B. Nondimensional governing equations

We nondimensionalize the electric potential � with re-
spect to the so-called thermal voltage RT /F and we nondi-
mensionalize the counterion concentration with respect to the
fixed charges concentration c0. Moreover, we select the poly-
mer nominal semithickness h as the characteristic length for
scaling x, y, and z. Through nondimensionalization, the gov-
erning Eqs. �8� and �9� become

− �2�̃�̃�x̃, ỹ, z̃� = c̃�x̃, ỹ, z̃� − 1, �21a�

1

1 − �c̃
�̃c̃�x̃, ỹ, z̃� + c̃�x̃, ỹ, z̃��̃�̃�x̃, ỹ, z̃� = 0, �21b�

where the dimensionless variables and operators are indi-
cated with a superimposed tilde, that is, �x̃ , ỹ , z̃�= �x ,y ,z� /h,

�̃=� / �RT /F�, c̃=c /c0, �̃=� /h, and �̃=� /h2. Further, we
defined

� =


h
, �22�

where  is the so-called Debye screening length �see, for
example, �39�� that is given by

 =
1

F
	�0�rRT

c0
�23�

For commonly studied ionic membranes �see, for example,
�20,21��, c0�1000 mol m−3, h�10−4 m, and �r�10–100.
Therefore, at room temperature, �1–10 Å and �
�10−6–10−5. We note that electrochemical systems charac-
terized by comparable values of Debye screening lengths,
typically low temperature or highly concentrated solutions,
have been successfully studied in the continuum limit given
by the Poisson-Nernst-Planck model �see, for example, �25��.
The continuum modeling approach based on the Poisson-
Nernst-Planck equation set is capable of reliably predicting
important macroscopic quantities, such as average current
and voltage, even when the spatial extent of the system is
comparable with the ion size �44�, such as narrow ion chan-
nel. A detailed discussion of the limitations of the Poisson-
Nernst-Planck system in analyzing ion channels can be
found in �44,45� along with alternative approaches based on
Brownian dynamics, Monte Carlo simulations, and refined
continuum theories.

The dimensionless form of the boundary and integral con-
ditions �10b�, �10c�, and �14� is

�̃���1 − �̃��ỹ, z̃��, ỹ, z̃� = �
�

2
,�ỹ, z̃� � S̃ , �24a�

�̃s�̃�x̃, ỹ, z̃� · n̂M�ỹ, z̃� = 0, �x̃, ỹ, z̃� � M̃ , �24b�

�
S̃
�� ��̃�x̃, ỹ, z̃�

� x̃
+ �̃s�̃�x̃, ỹ, z̃� · �̃s�̃

+�ỹ, z̃���
x̃=�1−�̃+�ỹ,z̃��

dS̃

= �
S̃
�� ��̃�x̃, ỹ, z̃�

� x̃

− �̃s�̃�x̃, ỹ, z̃� · �̃s�̃
−�ỹ, z̃���

x̃=−�1−�̃−�ỹ,z̃��
dS̃ , �24c�

where �̃�=�� /h is the dimensionless electrode roughness, S̃
is the scaled polymer midsurface, M̃ is the scaled polymer
mantle, and �=FV / �RT� is the dimensionless voltage ap-
plied across the electrodes. The dimensionless forms of the

Jacobians J̃� are defined by J̃��ỹ , z̃�=J��y ,z�.
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III. MATCHED ASYMPTOTIC EXPANSIONS

Here, we derive an analytical solution for the concentra-
tion and electric potential in the IPMC by using the method
of matched asymptotic expansions. Our study is limited to
the leading-order solution of the modified Poisson-Nernst-
Planck model. Consistently, with related studies on symmet-
ric binary electrolytes �see, for example, �26,27��, we find
that the leading-order solution is sensitive to any minute
change in the local electrode local morphology, that is, the
concentration boundary layer fully adhere to the rough elec-
trodes. The validity of this solution is limited to the case in
which the electrode characteristic planar length, which mea-
sures the smallest wavelength of roughness changes �26,27�,
is considerably larger than the Debye screening length that
instead estimates the boundary layers’ extent. In other words,
the leading-order solution describes the IPMC physics in
case the electrodes are locally flat with respect to the Debye
screening length that practically sets the scale of the elec-
trode roughness.

A. Outer expansion: Polymer bulk region

We seek regular asymptotic expansions of the electric po-
tential and concentration in the outer region, that is,

�̃o�x̃, ỹ, z̃� = �̃0
o�x̃, ỹ, z̃� + ��̃1

o�x̃, ỹ, z̃� + �2�̃2
o�x̃, ỹ, z̃� + ¯ ,

�25a�

c̃o�x̃, ỹ, z̃� = c̃0
o�x̃, ỹ, z̃� + �c̃1

o�x̃, ỹ, z̃� + �2c̃2
o�x̃, ỹ, z̃� + ¯ ,

�25b�

where we used superscript o to label the outer solution and
subscripts 1 ,2 , . . . to identify the unknown summands in the
asymptotic expansions �see, for example, �37��. A consistent
notation is used for the asymptotic expansions of the inner
solutions.

By substituting Eq. �25� into the governing Eqs. �21a� and
�21b�, using the boundary conditions �24b�, and equating
terms of the same order, we obtain an hierarchy of partial

differential equations for �̃0
o , �̃1

o , . . . and c̃0
o , c̃1

o , . . .. At the
leading order, we find the following concentration and
charge distribution in the bulk region:

c̃0
o�x̃, ỹ, z̃� = 1, �26a�

�̃0
o�x̃, ỹ, z̃� = A , �26b�

where A is a constant parameter that represents the electric
potential in the polymer bulk. The constant A is an unknown
that is determined by matching between the outer and inner
solutions.

B. Inner expansions: Electrode-polymer interfaces

In order to determine valid expansions for the concentra-
tion and electric potential in the vicinity of the electrodes, we
magnify the boundary layers’ depth by defining the stretch-
ing transformations

���x̃, ỹ, z̃� =
1

�	J̃��ỹ, z̃�
�1 − �̃��ỹ, z̃� 
 x̃� . �27�

The stretching transformations �27� are needed to magnify
the boundary layer extent in the vicinity of the anode and
cathode, that is, for x̃ in the neighborhood of ��1
−���ỹ , z̃��.

We define the functions c̃� and �̃� such that

c̃�
„���x̃, ỹ, z̃�, ỹ, z̃… = c̃�x̃, ỹ, z̃� , �28a�

�̃�
„���x̃, ỹ, z̃�, ỹ, z̃… = �̃�x̃, ỹ, z̃� . �28b�

By using the chain rule of differentiation, we find that the

spatial derivatives of �̃ can be rewritten as

��̃�x̃, ỹ, z̃�
� x̃

= �
 1

�	J̃��ỹ, z̃�

��̃����, ỹ, z̃�
��� �

��=���x̃,ỹ,z̃�

,

�29a�

�̃s�̃�x̃, ỹ, z̃� = ��̃s�̃
����, ỹ, z̃� −

���̃sJ̃
��ỹ, z̃�

2J̃��ỹ, z̃�

��̃����, ỹ, z̃�
���

−
�̃s�̃

��ỹ, z̃�

�	J̃��ỹ, z̃�

��̃����, ỹ, z̃�
��� ��

��=���x̃,ỹ,z̃�

.

�29b�

An equivalent expression can be computed for the gradient
of c̃ in terms of c̃�.

The stretching transformations in Eq. �27� remove the sin-
gular perturbation in the Poisson equation �21a�. Thus, we
seek regular asymptotic expansions of the electric potential
and concentration in the inner regions, that is,

�̃����, ỹ, z̃� = �̃0
����, ỹ, z̃� + ��̃1

����, ỹ, z̃� + �2�̃2
����, ỹ, z̃�

+ ¯ , �30a�

c̃����, ỹ, z̃� = c̃0
����, ỹ, z̃� + �c̃1

����, ỹ, z̃� + �2c̃2
����, ỹ, z̃�

+ ¯ . �30b�

By substituting the inner expansions �30� into the governing
Eq. �21�, we obtain an hierarchy of partial differential equa-

tions for the asymptotic sequences of �̃+, �̃−, c̃+, and c̃−. At
the leading order, we find

�2�̃0
����, ỹ, z̃�
�����2 = 1 − c̃0

����, ỹ, z̃� , �31a�

� c̃0
����, ỹ, z̃�

��� + c̃0
����, ỹ, z̃��1 − �c̃0

����, ỹ, z̃��
��̃0

����, ỹ, z̃�
��� = 0.

�31b�

Since the inner expansions are valid at the electrode-
polymer interfaces, they should satisfy the boundary condi-
tions �24a� that, at the leading order, yields
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�̃0
��0, ỹ, z̃� = �

�

2
. �32�

Moreover, the inner expansions should satisfy the integral
constraint �24c� that, at the leading order, gives

− �
S̃

	J̃+�ỹ, z̃�
��̃0

+�0, ỹ, z̃�
��+ dS̃ = �

S̃

	J̃−�ỹ, z̃�
��̃0

−�0, ỹ, z̃�
��− dS̃ .

�33�

Similarly, at the leading order, the dimensional charge and
bending moment in Eqs. �15� and �20� become

Q = −
Fc0h2

�S� �
S̃

	J̃+�ỹ, z̃�
��̃0

+�0, ỹ, z̃�
��+ dS̃ , �34a�

M = 2khQ + Fc0h3�
S̃
�̃+�ỹ, z̃�	J̃+�ỹ, z̃�

��̃0
+�0, ỹ, z̃�
��+

− �̃−�ỹ, z̃�	J̃−�ỹ, z̃�
��̃0

−�0, ỹ, z̃�
��− �dS̃ . �34b�

We note that the first summand in Eq. �20� does not appear in
the leading-order expansion of the average bending moment
since it is proportional to �2, while the other two summands
are proportional to �.

C. Matching

Matching between the outer solution and the inner solu-
tions is obtained by enforcing the following set of equalities:

lim
��→�

c̃����, ỹ, z̃� = lim
x̃→��1−���ỹ,z̃��

c̃o�x̃, ỹ, z̃� , �35a�

lim
��→�

�̃����, ỹ, z̃� = lim
x̃→��1−���ỹ,z̃��

�̃o�x̃, ỹ, z̃� . �35b�

By specializing Eq. �35� to the leading order and by using
Eq. �26�, we find the following conditions on the inner solu-
tions:

lim
��→�

c̃0
����, ỹ, z̃� = 1, �36a�

lim
��→�

�̃0
����, ỹ, z̃� = A . �36b�

The inner solutions for the concentration and the electric
potential along with the electric potential A in the bulk poly-
mer region are determined by solving Eq. �31� subjected to
conditions �32�, �33�, and �36b�.

D. Composite solution

At the leading order, the concentration and electric field
distribution in the whole polymer region are determined by
combining the outer solution in Eq. �26� with the inner solu-

tions c̃0
� and �̃0

� and by accounting for their common limit
condition �36�. More specifically, the concentration and elec-

tric potential in the polymer at the leading order are given by

c̃0�x̃, ỹ, z̃� = − 1 + c̃0
+1 − �̃+�ỹ, z̃� − x̃

�	J̃+�ỹ, z̃�
, ỹ, z̃�

+ c̃0
−1 − �̃−�ỹ, z̃� + x̃

�	J̃−�ỹ, z̃�
, ỹ, z̃� , �37a�

�̃0�x̃, ỹ, z̃� = − A + �̃0
+1 − �̃+�ỹ, z̃� − x̃

�	J̃+�ỹ, z̃�
, ỹ, z̃�

+ �̃0
−1 − �̃−�ỹ, z̃� + x̃

�	J̃−�ỹ, z̃�
, ỹ, z̃� . �37b�

E. Leading-order solution of the inner problems

In order to reduce the order of the nonlinear boundary
value problem �21�, we introduce the functions �� such that

c̃0
� =

exp����
1 − � + � exp����

. �38�

By substituting Eq. �38� into Eq. �31b�, we have

������, ỹ, z̃�
��� +

��̃0
����, ỹ, z̃�

��� = 0 �39�

that implies

�����, ỹ, z̃� = − �̃0
����, ỹ, z̃� + K��ỹ, z̃� , �40�

where K� are unknown functions that are independent of the
stretched variables.

By substituting Eqs. �38� and �40� into Eq. �31a�, we find
two second-order nonlinear ordinary differential equations in
the �� variables for the functions ����� , ỹ , z̃�. That is, we
find

�2�����, ỹ, z̃�
�����2 = f„�����, ỹ, z̃�… , �41�

where the nonlinear function f is defined by

f��� =
exp���

1 − � + � exp���
− 1. �42�

Boundary conditions for ����� , ỹ , z̃� and subsidiary con-
ditions for the introduced parameter A and the functions K�

are obtained by substituting Eq. �38� into the boundary con-
ditions �32�, the matching conditions �35a� and �35b�, and
the integral condition �33�. By following this procedure, we
find

���0, ỹ, z̃� = K��ỹ, z̃� 

�

2
, �43a�

lim
��→�

�����, ỹ, z̃� = 0, �43b�

lim
��→�

�����, ỹ, z̃� = K��ỹ, z̃� − A , �43c�
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+ �
S̃

	J̃+�ỹ, z̃����+��+, ỹ, z̃�
��+ �

�+=0
dS̃

= − �
S̃

	J̃−�ỹ, z̃�� ��−��−, ỹ, z̃�
��− �

�−=0
dS̃ . �43d�

From Eqs. �43b� and �43c�, we have that K� are constants
and both equal to the parameter A. The functions �� and the
parameter A are determined by solving the nonlinear second-
order ordinary differential equation �41� in the �� variables
subjected to conditions �43a�, �43b�, and �43d�.

The problem can be further simplified and transformed
into a manageable Cauchy problem by a close analysis of Eq.
�41�. More specifically, we note that the function

U�,
d�

d�
� =

1

2
d�

d�
�2

+ � − ln�1

�
��1 − �� + � exp�����

�44�

is a first integral of

d2����
d�2 = f��� . �45�

By making use of the first integral U, we transform the non-
linear boundary value problem �41� into an initial value
problem. A similar approach has been used in �23� to analyze
charge dynamics of IPMCs with flat electrodes in absence of
steric effects. In Fig. 2, we show the level lines of U in the
phase plane for two selected values �.

From Fig. 2, we evince that the only solutions of Eq. �45�
that tend to the origin as � goes to infinity are those for which
U=0 that are in the second and fourth quadrants of the phase
plane. Therefore, we replace the limit conditions �43b� with

U��,
���

��� � = 0, �46�

along with the constraint that the solution is in the second or
fourth quadrant of the phase plane, that is,

������, ỹ, z̃�
��� �����, ỹ, z̃� 	 0. �47�

By combining �43a�, �43d�, �46�, and �47� and assuming that
��0, we determine the initial conditions of the Cauchy
problem in terms of the unknown constant A, that is, we find

� ��+��+, ỹ, z̃�
��+ �

�+=0
= �A −

�

2
� , �48a�

� ��−��−, ỹ, z̃�
��− �

�−=0
= − �A +

�

2
� , �48b�

where A is the root of the transcendental equation

�A +
�

2
��S̃+� = �A −

�

2
��S̃−� �49�

in the interval �−� /2,� /2� and
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FIG. 2. �Color online� Level curves of Eq. �44� for two different values of the parameter �.
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FIG. 3. �Color online� � as a function of the bulk polymer potential A for different values of the packing parameter �: �a� large parameter
variation in logarithmic scale and �b� detailed plot in the neighborhood of the origin.
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��A� = 	2	− A +
1

�
ln�1 − � + � exp�A�� . �50�

We note that the numerical value of the bulk potential A
depends only on the ratio between the overall electrodes’
surface area and the packing parameter �.

Figure 3 shows the function � for different values of the
packing parameter �. The function � increases as the abso-
lute value of A increases for any value of �. The rate of
change in � increases as � increases and is larger for positive
values of A as compared to negative values of A.

Once the constant A is determined from Eq. �49�, all the
initial conditions of the Cauchy problem in Eqs. �43a� and
�48� can be computed. Thus, Eq. �45� can be numerically
integrated to determine the functions ��. The concentration
and electric potential in the whole IPMC region are com-
puted from the knowledge of the constant A and the func-
tions �� by using Eqs. �38� and �40� and recalling that
K��ỹ , z̃�=A.

The charge per unit nominal surface stored in the IPMC is
computed by using Eqs. �40� and �48� in Eq. �34a�, that is,

Q = Fc0
�S+�
�S�

�A −
�

2
� , �51�

where A is the solution of Eq. �49�. From Eq. �51�, we note
that the charge stored in the IPMC is independent of the
IPMC thickness and increases linearly with the electrode sur-
face area.

The differential capacitance of the IPMC per unit nominal
surface area is defined as the rate of change in the stored
charge as a function of the applied voltage divided by the
nominal IPMC surface, that is,

� =
dQ

dV
=

�0�r



�S+�
�S� �d�A −

�

2
�

d�
�

�=FV/RT
. �52�

The average bending moment of the IPMC is computed
by using Eqs. �40� and �48� in Eq. �34b� and by accounting
for Eq. �5�, that is,

M = 2khQ = 2khFc0
�S+�
�S�

�A −
�

2
� . �53�

We note that Eq. �53� indicates that the charge stored in the
IPMC and its bending moment are linearly related in accor-
dance with the experimental results in �33�.

IV. RESULTS

A. Bulk potential

If the anode and cathode have the same surface area, that

is, �S̃−�= �S̃+�, Eq. �49� can be solved to yield the following
simple expression for A:

A = ln� 1 − �

�

sinh��

2
�

sinh��1 − ��
2

�� . �54�

In addition, in the limit of �→0, we have A
=ln�� / �2 sinh�� /2���. We note that in case of flat electrodes

�S̃−�= �S̃+�=1. Figure 4 shows the relative bulk potential as a
function of the applied voltage for different values of the
packing parameter in the case the two electrodes have the
same surface area. For small applied voltages, the bulk po-
tential is approximately zero for any value of �. As the ap-
plied voltage increases, the relative bulk potential monotoni-
cally approaches �−1 /2. The sign of the bulk potential for
high values of � depends on the packing parameter. For �
	1 /2, the bulk potential is negative, whereas, for ��1 /2, it
is positive. For �=1 /2, the bulk potential is zero for any
value of �.

Figure 5 shows the relative bulk potential for unequal
electrodes as a function of the packing parameter � for �
=1 and �=10. The bulk potential is determined by solving
Eq. �49�. If the cathode area is larger than the anode area, the
bulk potential is higher than the one obtained in case of equal
surface area electrodes. On the other hand, if the cathode
area is smaller than the anode area, the bulk potential tends
to be smaller than the one in case of flat electrodes. As the

0 10 20 30 40 50

�0.4

�0.2

0.0

0.2

0.4

Α

A
�Α

Ν �0.9
Ν�0.5
Ν�0.1
Ν�0

FIG. 4. �Color online� Relative bulk potential as a function of
the applied potential for equal surface area electrodes.
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FIG. 5. �Color online� Relative bulk potential for unequal surface electrodes and �a� �=1 and �b� �=10.
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applied voltage increases, the dependence of the relative bulk
potential on the packing parameter becomes remarkably non-
linear.

B. Concentration and electric potential profiles

Figures 6 and 7 show the boundary layers in the concen-
tration and relative potential for �=1 and �=10 and different
values of the packing parameter � in case of equal surface
electrodes. We note that the stretching variable depends on

the local surface area of the electrode. Therefore, for a given
value of ��, the actual distance from the electrode surface
decreases as the electrode surface increases.

Depletion of mobile counterions at the polymer-anode in-
terface and mobile counterion enrichment at the polymer-
cathode interface is affected by both the applied potential �
and the packing parameter �. For a given applied voltage,
these phenomena are more prominent for smaller values of �.
Indeed, at larger values of the packing parameter �, redistri-
bution of mobile counterions in the IPMC is limited. For a
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FIG. 6. �Color online� Concentration and relative electric potential in the proximity to the electrodes at �=1.
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FIG. 7. �Color online� Concentration and relative electric potential in the proximity to the electrodes at �=10.
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given packing parameter �, increasing the applied electric
potential results into severe asymmetries in the concentration
distribution at the polymer-electrode interfaces. For small
values of �, the concentration is approximately an antisym-
metric function of the through-the-thickness variable x̃. As
the applied potential increases, the concentration at the two
polymer-electrode interfaces becomes remarkably different
and presents steep growth in the vicinity of the cathode and
flat reduction in the anode proximity.

The profile of the relative electric potential in the vicinity
of the electrodes is also affected by both the applied voltage
and the packing parameter. For small values of �, the relative
potential is approximately antisymmetric with respect to the
coordinate x̃ and the bulk potential is approximately zero. As
the potential increases, the bulk potential becomes remark-
ably different than zero and the potential distribution loses
the antisymmetry with respect to x̃. The bulk potential A as a
function of � and � follows the trend illustrated in Fig. 4.

For given electrodes, the extent of the boundary layers
and the concentration profile in the proximity of the elec-
trodes depend on both the applied voltage and the packing
parameter �. For two equal surface electrodes, Figs. 8�a� and
8�b� illustrate the extents of the boundary layers, say l�, in
the range �=0.01–50 and for different values of �. The
boundary layers’ extent is arbitrarily defined as the value of
the stretched variable at which the concentration is within
10−4 of its bulk value, that is, c+�0.9999 and c−	1.0001.
The boundary layers’ depth sensibly increases as the packing
parameter � increases due to steric effects that force the
counterions to occupy a more extended region in the cathode
proximity. For small values of �, the concentration boundary
layers’ extent rapidly reaches a saturation value as the poten-
tial applied across the electrodes increases, whereas for high
values of � a continuous growth of boundary layers’ extent is

observed in the studied range of �. For the same range of
parameters, Figs. 8�c� and 8�d� show the concentration at the
anode and cathode, respectively, for different values of � and
�. We note that as the voltage applied across the electrodes
increases, the counterion concentration at the cathode in-
creases while it decreases at the anode. These changes are
controlled by the parameter �. In particular, we note that, for
��0, all the concentrations achieve their packing limit 1 /�
in the cathode proximity for large values of �.

As made clear by Figs. 8�a� and 8�b�, the dimensionless
boundary layer extent is on the order of 10. Thus, the dimen-
sional thickness in the x direction of the concentration
boundary layers is approximately a few tens of 	J��y ,z�.
For the leading-order solution to be valid, this depth needs to
be smaller than the in-plane characteristic length of the rough
electrodes. For example, for a sinusoidal surface roughness
modeled by �̃�=� sin�2�y /�y�sin�2�z /�z�, we may reason-
ably require that 100	1+ �2�� /min��y ,�z��2	min��y ,�z�.
For �0.1–1 nm and �y =�z=�, we may thus infer that the
smallest roughness length scale that the Debye screening
length resolves is in the range of 50–500 nm. In other words,
the scale that should be used to measure the surface rough-
ness of IPMC electrodes should be on the order of 50–500
nm that is well in line with experimentally observed length
scales of metal protrusions observed in IPMCs �30,31,33�.

C. Stored charge and bending moment

Figure 9 displays the function ��A−� /2� and its deriva-
tive as a function of � for equal surface electrodes. These
functions fully define the dependence of the stored charge,
capacitance, and bending moment on the applied voltage V
�see Eqs. �51�–�53��. For small applied voltages and �=0, the
IPMC capacitance is equal to ��0�r�S+�� / �2�S�� which cor-
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FIG. 8. �Color online� Extent of concentration boundary layers in the proximity to �a� the anode and �b� cathode and numerical values
of the concentration values at �c� the anode and �d� cathode.
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responds to the series connection of two equal double-layer
capacitances in the proximity of the electrodes. As � in-
creases, the capacitance reduces due to the packing of coun-
terions in the proximity of the cathode. For typical IPMCs
�see, for example, �2,5,20,30,31,33��, ��0�r� / �2�
�0.1–1 F m−2 and the capacitance per unit surface ranges
in the interval of 10–1000 F m−2. Therefore, the surface
roughness is responsible for a capacitance boost of 1–4 or-
ders of magnitude which is consistent with the morphologi-
cal studies in �30–32�. As the voltage increases, the capaci-
tance reduces due to the increase in the boundary layer
thickness �see Figs. 8�a� and 8�b��. Similarly, the bending
moment and the stored charge decrease as the applied volt-
age increases. This nonlinear behavior has been experimen-
tally observed in �20� for a cantilever IPMC strip subjected
to different step-input voltages as discussed in what follows.

Figure 10 displays ��A−� /2� as a function of � for dif-
ferent values of the parameter � and for �S−� / �S+�=2 and
�S−� / �S+�=0.5. By comparing Figs. 9�a�, 10�a�, and 10�b� we
note that differences in the electrode surface area drastically
change the impact of the packing parameter on the IPMC
charge and bending moment. In particular, as the cathode
surface reduces as compared to the anode surface, the pack-
ing parameter severely reduces the charge stored in the
IPMC. Indeed, reducing the cathode surface area limits the
space available to the mobile charges and therefore enhances
packing phenomena.

D. Comparison with experimental data

Here, we compare our modeling results with the experi-
mental data on IPMC cantilever strips in �20�. Experimental

data in �20� refer to an IPMC that includes Nafion-117 as the
ion-exchange membrane, lithium as the counterion species,
and formamide as the solvent with a nearly 100% weight
uptake. The electrodes are composed of RuO2 and a thin
layer of gold. The approximate nominal thickness of the
IPMC is 0.5 mm. Experiments are conducted at room tem-
perature, that is, T=293 K. The nominal concentration of
fixed charges at 100% formamide uptake is reported in �20�
to be c0=1073 mol m−3.

From the experimental data reported in �20� for the stored
charge density per unit IPMC nominal surface area versus
the applied voltage, we identify the parameter Fc0�S+� / �S�
in Eq. �51� by setting �=0 and assuming that the electrodes
have the same surface area. Figure 11�a� shows the experi-
mental data versus the theoretical predictions from Eqs. �51�
and �54� with Fc0�S+� / �S�=198 C m−2. By selecting �r
=10 consistently with the available data on the dielectric
constant of formamide and Nafion, which are 84 and 3, re-
spectively �see, for example, �16��, we find that =1.45 Å.
In this case, the ratio of the electrode surface area versus the
nominal surface area is found to be 13200. The packing pa-
rameter can be potentially identified from the morphology of
the electrodes, that is, by setting the value of �S+� / �S� and
identifying � from the stored charge experiments. In this
case, due to the lack of experimental data, we set �=0 and
identify the electrode roughness.

Along with charge data, in �20�, experimental data on
IPMC bending strains are reported. By assuming that the
bending strain induced in the IPMC is proportional to the
average bending moment M through a proportionality con-
stant �, from Eq. �53�, we have that �=M /�= �2kh /��Q.
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FIG. 9. �Color online� Nondimensional functions defining the overall IPMC response as the applied voltage increases, according to Eqs.
�51�–�53�.
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FIG. 10. �Color online� Dependence of the stored charge and bending moment on the applied voltage for �a� larger anode surface and �b�
larger cathode surface.
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Therefore, the coefficient 2kh /� can be experimentally iden-
tified by comparing the strain data with the identified values
of the stored charge per unit surface area. Figure 11�b� dis-
plays the experimental data from �20� together with the pre-
dictions obtained by using the stored charge in Fig. 11�a� and
2kh /�=2.4�10−6 C−1 m2. The proposed model predictions
are in good agreement with the experimental results on bend-
ing strain. Superior data fitting may be possible by consider-
ing different electrode surfaces as well as packing phenom-
ena, see Figs. 10�a� and 10�b�, or nonlinear stress-charge
constitutive behaviors, see �21�. Discrepancies between
theory and experiments for the IPMC stored charge may be
due to the experimental identification of the charge from the
IPMC current that may be affected by redox reactions as
discussed in �21�.

V. CONCLUSIONS

We studied the influence of steric effects and electrode
surface roughness on the nonlinear static electromechanical
response of IPMCs. We used the modified Poisson-Nernst-
Planck model proposed in �34,35� to describe the distribution
of the electric potential and the concentration of mobile
counterions in response to a static voltage difference applied
across the IPMC electrodes. We used the method of matched
asymptotic expansions to determine an analytical solution for
the electric potential and the concentration of counterions in
the whole IPMC domain. Further, we determined closed-
form expressions for the charge stored in the IPMC and for
its differential capacitance and bending moment production.
We showed that bending moment production is proportion-
ally related to charge storage in accordance with the experi-
mental evidence reported in �33�.

The analytical solution shows the formation of thin
boundary layers in the proximity of the polymer-electrode

interfaces. For positively charged counterions, the anode-
polymer interface shows prominent counterion depletion,
while remarkable counterion enrichment is present at the
cathode-polymer interface. The boundary layer formation is
controlled by the packing limit of the counterion concentra-
tion, the applied voltage across the IPMC electrodes, and the
electrode surface roughness. As the surface area of the elec-
trodes increases, a larger area becomes available for bound-
ary layers development. Therefore, major increases in the
charge, capacitance, and bending moment are observed in
accordance with the experimental evidence reported in
�30,31�. The charge stored in the IPMC and the produced
bending moment nonlinearly increase as the applied voltage
increases in striking agreement with the experimental results
in �20�. Further, we analyzed the effect of unequal electrode
surface area on the IPMC electromechanical response. We
showed that unequal surface areas lead to remarkable asym-
metries in the IPMC response as the cathode and anode are
switched and that these asymmetries are enhanced by steric
effects.

The proposed study does not consider chemical reactions
and Stern layers at the polymer-electrode interfaces and is
limited to the case of small Debye lengths based on the sole
leading-order solution. Future work will be devoted to ana-
lyze the response of IPMCs in case of more complex physi-
cal scenarios at the polymer-electrode interfaces for a broad
range of Debye screening lengths.

ACKNOWLEDGMENTS

This research was supported by the National Science
Foundation under Grant No. CMMI-0745753. The author
wishes to thank Nicole Abaid and Matteo Aureli for their
careful review of the manuscript.

�1� K. Farinholt and D. J. Leo, Mech. Mater. 36, 421 �2004�.
�2� Z. Chen, X. Tan, A. Will, and C. Ziel, Smart Mater. Struct. 16,

1477 �2007�.
�3� C. Bonomo, L. Fortuna, P. Giannone, S. Graziani, and S.

Strazzeri, Smart Mater. Struct. 17, 015014 �2008�.
�4� C. Bonomo, P. Brunetto, L. Fortuna, P. Giannone, S. Graziani,

and S. Strazzeri, IEEE Sens. J. 8, 1486 �2008�.
�5� S. Nemat-Nasser, J. Appl. Phys. 92, 2899 �2002�.
�6� B.-K. Fang, M.-S. Ju, and C.-C. K. Lin, Sens. Actuators, A

137, 321 �2007�.
�7� G. Del Bufalo, L. Placidi, and M. Porfiri, Smart Mater. Struct.

17, 045010 �2008�.

0.0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

2500

3000

V �V �

Χ
�
Μm
m
�
1 �

0.0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

120

140

V �V �

Q
�m
C
cm
�
2
�

(b)(a)

FIG. 11. �Color online� Comparison between the proposed analytical solution �solid line� and experimental results of �20� �dots�: �a�
stored charge per unit surface and �b� bending strain.

MAURIZIO PORFIRI PHYSICAL REVIEW E 79, 041503 �2009�

041503-12



�8� T. T. Nguyen, N. S. Goo, V. K. Nguyen, Y. Yoo, and S. Park,
Sens. Actuators, A 141, 640 �2008�.

�9� S. Guo, T. Fukuda, and K. Asaka, IEEE/ASME Trans. Mecha-
tron. 8, 136 �2003�.

�10� B. Kim, D.-H. Kim, J. Jung, and J.-O. Park, Smart Mater.
Struct. 14, 1579 �2005�.

�11� K. J. Kim, W. Yim, J. W. Paquette, and D. Kim, J. Intell.
Mater. Syst. Struct. 18, 123 �2007�.

�12� E. Mbemmo, Z. Chen, S. Shatara, and X. Tan, Modeling of
biomimetic robotic fish propelled by an ionic polymer-metal
composit acutator, Proceedings of the 2008 IEEE International
Conference on Robotics and Automation, �IEEE, Pasadena,
CA, 2008�, pp. 689–694.

�13� J. Brufau-Penella, M. Puig-Vidal, P. Giannone, S. Graziani,
and S. Strazzeri, Smart Mater. Struct. 17, 015009 �2008�.

�14� R. Tiwari, K. Kim, and S. Kim, Smart Structures and Systems
4, 549 �2008�.

�15� P. G. de Gennes, K. Okumura, M. Shahinpoor, and K. J. Kim,
Europhys. Lett. 50, 513 �2000�.

�16� S. Nemat-Nasser and J. Y. Li, J. Appl. Phys. 87, 3321 �2000�.
�17� P. J. Costa Branco and J. A. Dente, Smart Mater. Struct. 15,

378 �2006�.
�18� M. Porfiri, Smart Mater. Struct. 18, 015016 �2009�.
�19� T. Wallmersperger, B. Kroplin, and R. W. Gulch, Mech. Mater.

36, 411 �2004�.
�20� T. Wallmersperger, D. J. Leo, and C. S. Kothera, J. Appl. Phys.

101, 024912 �2007�.
�21� T. Wallmersperger, B. J. Akle, D. J. Leo, and B. Kroplin, Com-

pos. Sci. Technol. 68, 1173 �2008�.
�22� K. Farinholt and D. J. Leo, J. Appl. Phys. 104, 014512 �2008�.
�23� M. Porfiri, J. Appl. Phys. 104, 104915 �2008�.
�24� M. Shahinpoor and K. J. Kim, Smart Mater. Struct. 13, 1362

�2004�.
�25� A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fun-

damentals and Applications �John Wiley and Sons, Inc., Hobo-
ken, NJ, 2001�.

�26� L. I. Daikhin, A. A. Kornyshev, and M. Urbakh, Phys. Rev. E
53, 6192 �1996�.

�27� L. I. Daikhin, A. A. Kornyshev, and M. Urbakh, J. Chem.
Phys. 108, 1715 �1998�.

�28� R. Guidelli and W. Schmickler, Electrochim. Acta 45, 2317
�2000�.

�29� G. Palasantzas and G. M. E. A. Backx, J. Chem. Phys. 118,
4631 �2003�.

�30� K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro,
Electrochim. Acta 46, 737 �2000�.

�31� K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro,
Electrochim. Acta 46, 1233 �2001�.

�32� S. J. Kim, S.-M. Kim, K. J. Kim, and Y. H. Kim, Smart Mater.
Struct. 16, 2286 �2007�.

�33� B. J. Akle, D. J. Leo, M. A. Hickner, and J. E. McGrath, J.
Mater. Sci. 40, 3715 �2005�.

�34� M. S. Kilic, M. Z. Bazant, and A. Ajdari, Phys. Rev. E 75,
021502 �2007�.

�35� M. S. Kilic, M. Z. Bazant, and A. Ajdari, Phys. Rev. E 75,
021503 �2007�.

�36� M. Van Dyke, Perturbation Methods in Fluid Mechanics �The
Parabolic Press, Stanford, CA, 1975�.

�37� A. H. Nayfeh, Introduction to Perturbation Techniques �Wiley-
Interscience, New York, 1981�.

�38� I. V. Andrianov and L. I. Manevitch, Asymptotic Approaches in
Nonlinear Dynamics �Sprinder-Verlag, New York, NY, 1998�.

�39� M. Z. Bazant, K. Thornton, and A. Ajdari, Phys. Rev. E 70,
021506 �2004�.

�40� Y. K. Suh and S. Kang, Phys. Rev. E 77, 031504 �2008�.
�41� N. Abaid, R. S. Eisenberg, and W. Liu, SIAM J. Appl. Dyn.

Syst. 7, 1507 �2008�.
�42� J. N. Reddy, Mechanics of Laminated Composite Plates and

Shells: Theory and Analysis, 2nd ed. �CRC Press, Boca Raton,
FL, 2004�.

�43� E. H. Mansfield, The Bending and Stretching of Plates, 2nd ed.
�Cambridge University Press, New York, 1989�.

�44� Z. Schuss, B. Nadler, and R. S. Eisenberg, Phys. Rev. E 64,
036116 �2001�.

�45� S.-H. Chung and S. Kuyucak, Biochim. Biophys. Acta 1565,
267 �2002�.

INFLUENCE OF ELECTRODE SURFACE ROUGHNESS AND … PHYSICAL REVIEW E 79, 041503 �2009�

041503-13


